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Abstract   The ELI-NP Array of DEtectors (ELIADE) is one of the experimental 

setups being built at ELI-NP. The reaction chamber for the ELIADE array is, 

together with the CCD camera the goal of research team. The precision of the ex-

periment make important the small deformation and the vibration of the equip-

ment. To study this, a model using Finite Element Method is used. The device 

consists of elastic elements to a smaller or greater extent. Usually, if the velocities 

and the occurring loads are low then the rigid elements hypothesis can lead to an 

excellent model. But in the experiment that will be conduct in the laboratory with 

ELIADE, precision is so important that it require extremely small deformation of 

the device. For this a model that takes into account the elasticity of the body must 

be used in order to study the movement of the part of the device during the exper-

iment. 

1. Introduction 

The Gamma Beam System (GBS) is based on the creation of high energy photons 

after the collision between a visible light laser (2.3eV, 515 nm) and a high energy 

electron beam. The collision between the free electrons (not bound "inside" an at-

om) and photons is described by a process named "Compton scattering". In nature, 

this kind of collisions usually takes place between an electron at rest and a high 

energy photon, and results in the electron gaining energy at the expense of the 
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photon which loses some of its energy. Because in the GBS, the roles are reversed 

(the electron has much more energy than the photon), the photon is the one gain-

ing energy, and as a result, we say that we are dealing with "an inverse Compton 

scattering" , [1] 

The ELI-NP Array of DEtectors (ELIADE) is one of the experimental setups be-

ing built at ELI-NP which could benefit from the present project. From the physics 

point of view the array is made of 8 (up to 12) HyperPure Germanium (HPGe) 

segmented clover detectors. The experiments envisaged for ELI-NP require this 

detectors to be placed on two rings, relative to the forward direction of the gamma 

beam.  The detector's axis are all converging to a "theoretical" point which we call 

"the center of the array". Ideally, this is point where the photon beam intersects the 

target inside the reaction chamber (Fig.1).  

 

 

Fig. 1. The sketch of the interaction chamber  

 

An important distinction that needs to be done is the difference between the "cen-

ter of array" (described above) and the "desired center of the target". The surface 

of the gamma beam spot size on the target depends on a number of factors, but 

will typically range between 0.5 and 2 mm in diameter.  Ideally, the two are iden-

tical, but deviations from the ideal case have very different impacts on the experi-

ments. The problem becomes the precision obtains in the experiment. To achieve 

this is necessary to make an suitable model in order to obtain a dynamical re-

sponse of the system. 
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2. Current state and research context  

The hypothesis of rigid body, frequent used in the dynamical analysis of 

multibody systems, may be satisfactory in most applications. But the different part 

of a device consists of elastic elements to a smaller or greater extent. If the preci-

sion of the experiment imposes to know the deformations, that must be small, the 

elasticity becomes a significant element. In our case the deformations and the pos-

sible vibration may have, generally, an unfavorable influence on the operation of 

the device.  

Continuous mathematical models can be applied, from theoretical point of view, 

but are not useful in practical applications. The best way of approaching the prob-

lem is to apply the finite element method. The advantages of this approach result 

from [2]-[6]. 

The papers approaching this field have performed an analysis of a single deforma-

ble element, having a plane motion and then the study extended to the mechanisms 

with plane-parallel motion [7],[8] with all the deformable elements.  In [9] the re-

sults obtained in this field are being synthesized and some theoretical assumption 

are presented in [10]-[14]. 

3. FEM model 

The type of finite element used shall determine the chosen shape functions and the 

equations of motion shall be determined in a general case without considering cer-

tain shape functions. In what follows it is considered that deformations are small 

not influencing the general rigid motion of the whole system. It is considered that 

a chosen arbitrary finite element together with the solid a component of which it 

actually is, participates to the entire rigid motion of the mechanical system. The 

velocities and  accelerations of the points of this finite element shall be entirely 

determined if the velocity and acceleration of the origin of coordinate system the 

finite element is related to, the angular velocity and angular acceleration are 

known. In order to write the equations of motion for the studied finite element the 

equations of Lagrange shall be used.  The kinetic energy and the strain energy for 

the finite element and the work of the distributed and concentrated forces shall be 

also determined. If these values have been determined we can write the Lagrange 

function and apply the equations of Lagrange in order to be able to determine the 

equations of motion of the nodal points. The bodies forming the mechanical sys-

tem will be considered as being linear elastic.  
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Fig. 2. A representative finite element 

Let’s consider a finite element belonging to an elastic element of the mechanical 

system studied. The finite element considered shall be related to the local mobile 

coordinate system, which participates to the general rigid motion (Fig.2). The mul-

ti-body system consisting of several solids, these vectors will be different for each 

solid composing the system. The transformation of a vector from the local system 

of coordinates into the global system of coordinates occurs by means of a matrix 

R.   

If we note the position vector of point M with r GM ,  we may write: 

 r GM , = r GO , + r G = r GO , + rR  L   ,                         (1) 

where index G indicates a vector with the components expressed in the global co-

ordinate system and index L a vector with the components expressed in the local 

coordinate system.      

If point M has a displacement f L  changing into M’, we may write:  

           r GM ,' = r GO , + R ( r L + f L )                                        (2) 

where r GM ,'  is the position vector of point M’ with components expressed in the 

global coordinate system. The continuous displacement field f (x,y,z) L  is ap-
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proximated in the finite element method, depending on the nodal coordinates, by 

relation: 

f L = N (x,y,z)  e (t) L                            (3) 

where the matrix elements N  - the shape functions -, will depend on the type of 

the finite element chosen. 

4. Equation of motion for a three-dimensional finite element 

The equations of motion shall be obtained in the local coordinate system. For this 

purpose the equations of Lagrange shall be used [15].  The kinetic energy 

of the considered finite element is given by the expression:  

 
VV

c dVvE 
2

1

2

1 2 v T

GM ,'
v

GM ,'
dV.                     (4) 

 The potential energy (internal work) is: 

       
V

pE
2

1
 T

  dV.                                         (5) 

We remind you of the Hooke law which we write as follows:     

 = D                                (6) 

for an homogeneous, isotropic material. The differential relations which link the  

strains to the  finite deformations that can be expressed in a concise form: 

 = a f                       (7) 

where a  represents the differentiation operator (see [6]). If using the relations (6) 

and (7) the strains energy results: 


V

pE   
2

1
 T

Le, k e Le, dV   ,                           (8) 

where k e  is the  stiffness matrix: 
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k e = NaDaN
TT

T

V dV.                (9) 

If the distributed forces vector is noted with pp  (x,y,z), then the external work 

is: 

 V
W p

T

L f L dV=( V p
T

L  N dV) 
Le, .                       (10) 

The nodal forces  q
T

e  give an external work: 

cW = q
T

Le, Le,  .                                                               (11) 

The Lagrangean for the considered element will be: 

c

pc WWEEL    .                          (12) 

The equations of motion are obtained by applying the equations of Lagrange. Af-

ter a series of elementary calculations and rearranging of terms we get the equa-

tions of motion for the finite element considered:  

( NN
T

V ρdV) 
Le,

 + 2  ( NRRN
TT

V

 ρdV) 


Le,

+( k e + NRRN
TT

V

 ρdV) 
Le, = 

= q e + pN
T

V L dV  –  ( VN T
ρdV) 

T
R  r O – rRRN

TT

V

  ρdV        (13) 

The equations of motion can be written in a condensed form:   

               m e 


Le, + 2 c e   Le, + [ k e + k e (ε) + k e (ω
2
)] Le, = 

            = q e  + q
*

,Le  – q i

Le , (ε) – q
i

Le, (ω
2
) – m

i

Oe R T
 r O  .             (14) 

The equations of motion are related to the local system of coordinates and can be 

linearized  the system of reference being considered as “ frozen” in that particular 

position, in which the field of velocities and accelerations is known. The matrix 

coefficients can be calculated after choosing the shape functions and the nodal co-

ordinates for expressing the displacement of a point.  
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The assembling operation leads to the elimination of the liaison forces (see [14]-

[16]).  The involved matrices can be computed by choosing the nodal coordinates 

and the shape functions for the chosen finite element.  

5. Conclusions 

The obtained equations in the study of the dynamic response have additional 

terms.  The first additional term is 2 c e  
Le,

 and is due to the relative motion of 

nodal coordinates relative to the mobile coordinate systems attached to the moving 

bodies - Coriolis effects. The second additional term is k e (ε) + k e (ω
2
)  and 

represents a change in stiffness determined by the accelerations field of relative 

motion. These two terms can become significant in the dynamic response of the 

multibody system and can change not only quantitative but also qualitative this re-

sponse. In order to obtain a very high accuracy in the motion and control of the in-

teraction chamber the presented model was used in the project of the reaction 

chamber for ELIADE  array. 
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